Journal of Computational Physit§7,234-255 (2000)

®
doi:10.1006/jcph.1999.6373, available online at http://www.idealibrary.col DE &l.

Efficient Calculation of Jacobian and Adjoint
Vector Products in the Wave Propagational
Inverse Problem Using Automatic
Differentiation?

Thomas F. Colematfi,Fadil Santosg,and Arun Verma

*Department of Computer Science and Center for Applied Mathematics, Cornell University, Ithaca, New Yc
14850; tMinnesota Center for Industrial Mathematics, School of Mathematics, University of Minnesota,
Minneapolis, Minnesota 5545%Cornell Theory Center, Cornell University, Ithaca, New York 14850
E-mail: coleman@tc.cornell.edu, santosa@math.umn.edu, verma@cs.cornell.edu

Received February 18, 1999; revised July 27, 1999

Wave propagational inverse problems arise in several applications including med-
ical imaging and geophysical exploration. In these problems, one is interested in ob-
taining the parameters describing the medium from its response to excitations. The
problems are characterized by their large size, and by the hyperbolic equation which
models the physical phenomena. The inverse problems are often posed as a nonlin-
ear data-fitting where the unknown parameters are found by minimizing the misfit
between the predicted data and the actual data. In order to solve the problem numer-
ically using a gradient-type approach, one must calculate the action of the Jacobian
and its adjoint on a given vector. In this paper, we explore the use of automatic dif-
ferentiation (AD) to develop codes that perform these calculations. We show that by
exploiting structure at 2 scales, we can arrive at a very efficient code whose main
components are produced by AD. In the first scale we exploite the time-stepping
nature of the hyperbolic solver by using the “Extended Jacobian” framework. In the
second (finer) scale, we exploit the finite difference stencil in order to make explicit
use of the sparsity in the dependence of the output variables to the input variables.
The main ideas in this work are illustrated with a simpler, one-dimensional version
of the problem. Numerical results are given for both one- and two- dimensional
problems. We present computational templates that can be used in conjunction with
optimization packages to solve the inverse problena.2000 Academic Press

1 This research is sponsored in part by the Applied Mathematical Sciences Research Program (KC-04-02) ¢
Office of Energy Research of the U.S. Department of Energy under Grants DE-FG02-97ER25013 and DF-F(
94ER25225, and also by the National Science Foundation Grant DMS 9503114, and by the Air Force Offic
Scientific Research Grant F49620-95-1-0305. We acknowledge helpful discussions with William Symes, who
a similar on-going effort on automatic differentiation as ours [15]. Some of the ideas in this work were inspil
by his presentation at the Institute for Mathematics and its Applications, Minnesota, in July 1997.

234

0021-9991/00 $35.00
Copyright(© 2000 by Academic Press
All rights of reproduction in any form reserved.

INVERSION USING AUTOMATIC DIFFERENTIATION 235

Key Words:automatic differentiation; wave propagation; inverse problems seis-
mic inversion; hyperbolic PDEs; adjoints; finite difference computation; stencils;
Jacobian and adjoint products.

1. INTRODUCTION

In the type of wave propagational inverse problems under consideration, the goal i
determine parameters, such as sound speed distribution and density distribution, from |
sured data, which are collected at a set of receivers. Figure 1 explains the situation
incident disturbance is generated, as it travels in the unknown medium and produces re
tions and refractions. This information is collected at receivers placed at a set of locatic
Several such experiments are carried out for a set of incident disturbances. The inverse |
lem is to determine properties of the unknown medium from the set of measured respo

Problems of this type arise in several applications including geophysical explorat
and medical imaging. A common feature in these applications is that the problem is v
large. Typically, the number of unknowns and equations could be in the range ¢6 10
10°. Often, the most convenient way to solve this type of inverse problem is to pose it
an optimization problem, either using nonlinear least-squares [16, 12] or another apprc
specialized to take advantage of the properties afforded by the particular application [14
In any event, what one will need for computation is derivative information concerning t
relation between medium parameters and data. Because of the size of the problem
cannot compute and store the entire Jacobian of the function, but rather, we must find v
of computing the action of the Jacobian and its transpose on a given vector, or the so-c:
direct and adjoint products.

refracted waves
. L]

;

reflected waves receivers

unknown medium

incident wave

FIG. 1. Inthis figure, the problem is to identify the unknown medium. An incident wave is generated, and
it travels into the medium being probed, reflected and refracted signals are generated. These are captured
receivers. Several such experiments are carried out for a set of incident disturbances. The inverse problen
find the properties of the unknown medium from the collected data.

236 COLEMAN, SANTOSA, AND VERMA

The goal of this work is to show that efficient calculation of the direct and adjoint produ
is possible. The approach we take is to use automatic differentiation (AD) while exploiti
structure to the extent possible. We emphasize that without taking advantage of structu
direct application of current AD technology to the codes simulating the wave phenome
will lead to memory problems.

As we will show in the next section, the wave propagation can be modeled effective
using time-stepping finite difference schemes. The time-stepping nature of the scheme
be exploited using the general extended Jacobian framework [3, 4]. The spatial discre!
tion by finite differences reveals further structure. Each finite difference stencil encodes
dependence of a computed intermediate variable on other variables. In particular, it sh
that there is an inherent sparsity in the Jacobian. A combination of these structure explc
tions allows us to overcome the problem posed by size, and its consequence on mel
requirements.

In our implementation, we apply AD on the finite difference stencils and use the resulti
codes to assemble a procedure for computing the Jacobian and adjoint vector products
resulting code is as efficient as those that are obtained by directly performing summatic
by-parts calculation on the simulation program. The advantage here is that we have avo
the error-prone and tedious procedure [13]. Instead, we can view the code writing proc
at a higher level, leaving the most difficult parts to AD.

The plan of this article is as follows. We proceed with a short introduction to the inver
problem for acoustic waves. The model for the physics and its numerical discretization
described in Section 2. In Section 3, we review the extended Jacobian framework and s
how it can be used for our problem. We will provide templates for calculating the adjoir
vector product. The stencil approach and its implementation is presented in Section 4.
will also show how the stencil can be described at a higher level as projections. Templ:
for calculating Jacobian and adjoint vector products that use stencils are given. Sec
5 summarizes our experience with this method of computation. A final section conta
concluding remarks.

2. AUTOMATIC DIFFERENTIATION BACKGROUND

Automatic differentiation is based on the fact that all computer programs, no mat
how complicated, use a finite set @ementary functionas defined by the programming
language. The function computed by the program is simply a composition of these
mentary functions. The partial derivatives of the elementary functions are known, and
overall derivatives are computed using the chain rule; this process is known as auton
differentiation [9].

Abstractly, the program to evaluate the solutior{an m-vector) as a function ok
(generally an-vector) has the form

X = (X1, X2, ..., Xn)
\

2= (21,2, ...,2Zp), p>m+n
i

yE (yl’ y27 ~-~,Ym),

INVERSION USING AUTOMATIC DIFFERENTIATION 237

where the intermediate variableare related through a series of these elementary functiol
which may be unary,

zo= fen(@). 1<Kk
consisting of operations such és, pow(-), sin(-), .. .) or binary,
7= f&z.2), i<k j<k

suchas+, /,...).
There are a number of cases when the elementary function is not differentiable (¢
fSem(z) = abgz) or f&,(z,zj) = maxz, z;)). Sophisticated heuristic techniques are
developed to treat these cases. For more details consult [9].

Automatic differentiation has two basic modes of operations, the forward mode and
reverse mode. In the forward mode the derivatives are propagated throughout the cor
tation using the chain rule, e.g., for the elementary giep fX..(z, z;) the intermediate
derivative,dz/dx, can be propagated in the forward mode as

dj _ afé(lemdi 3fé(lemdj

dx dz, dx dz; dx’

This chain rule based computation is done for all the intermediate varialaled for the
output variables, finally yielding the derivativ%.

The reverse mode computes the derivatdagd z for all intermediate variables back-
wards (i.e., in the reverse order) through the computation. For example, for the elemer
stepzg = fe"lem(zi, z;), the derivatives are propagated as

% afe|emdu q du _ afe,emdu

a
dz 0z dz dzJ 0Z; dz’

At the end of computation of the reverse mode the deriv@\/will be obtained.

The forward and reverse modes can be used to compute the direct and the adjoint proc
Jv andJ v given a vectop, wherel is the Jacobian of a nonlinear mapping [9]. Both thes
computations require time proportional to one function evaluation, with the adjoint prodt
being approximately twice as costly as the direct mode. The Hessian-vector pkbduct
can also be computed via AD in time proportional to one function evaluation.

3. INVERSE PROBLEMS AND NUMERICAL MODELING

3.1. One-Dimensional Problem

Consider a bar or string of lengthwhose sound speed is location dependentuloett)
represent a measure of the disturbance at tilued locationx. Thenu satisfies the wave
equation

Ui = C2(X)Uyx forO<x < L, (1a)

wherec(x) is the sound speed of the medium. We assume that the medium is quiesce
t=0,

u(x,0) =0, and ux,00 =0, 0<x<L. (1b)

238 COLEMAN, SANTOSA, AND VERMA

Disturbance is introduced at the boundary 0 as a Neumann boundary condition
Uy (0, 1) = f (1), fort > 0. (1c)

We will assume thaff (t) is compactly supported away frota=0. On the right end, we
assume a radiation boundary condition

[uf — c(X)uy]Ix=L = 0. (1d)

We are giveru(0,t) =g(t) for0<t < T. The problem is to find the unknowatgx).
A convenient way to view the problem is to define the forward map as one that associ
a givenc(x) with a boundary data(0, t). Let

Alc](t) :=u(0,t), O<t<T,

where it is understood that the evaluationAjt](-) is through the initial-boundary value
problem (IBVP) in (1). A least-squares formulation of this problem is to solve th
minimization

T
min / |A[c](t) — g(®)[*dt. (2

0

c(X)

A typical solution to the above nonlinear least squares problem requires the knowle
of the gradient of the above functional. This translates to computing the adjoints of -
function A[c](-) [12, 13]. The first step in the numerical computation of the adjoints is t
discretize the problem.

A common discretization for this problem is to use finite difference methods. Let

uS~u(x,t), wherex =iAX,i =0:n,ty =kAt,k=0:m,

andAx =L/n, andAt = AAX for somex > 0. A second order finite difference is chosen.
The patrtial differential equation in (1a) is replaced by

Ut = 2(1 - 22 uft — Uk + a2 (U + Uk), fori=1:n-1k=>0. (3a)
We use the initial conditions
ut=uw =0 (3b)
We discretize the boundary conditions as
Ukt = 2(1— 2%c3)uf — us t + 222ciuk — 2F*A2c3Ax, (3c)

for the inhomogeneous Neumann condition on the left end, and

At
Up™ = Uy — G (Un — Una) (3d)

for the radiation boundary condition on the right. The discrete version of the forward m
is obtained by running the finite difference forward in time and recording the left end val
for uk, that is,

Alc]* = uf.

INVERSION USING AUTOMATIC DIFFERENTIATION 239

A way to describe the function evaluation is through a vector notation. Let us write t
vectorsuk = [u‘(‘,, u'i, el uﬁ]T andc = [co, C1, .. ., Cy] . Then the finite difference scheme
amounts to

uktt = Fee,uk, uk Y, withut=u’=0. (4)
The forward map frone to A[c] is given by, lettinge; = [1,0,...,0]",
Alcl*=eJu¥, fork=1:m. (5)
The inverse problem is to solve foiin
min|| A[c] - gII%, (6)

whereg is a data vector corresponding to a measurement.

3.2. Two-Dimensional Problem

The two-dimensional problem is motivated by a problem is acoustic imaging of hum
tissues. The geometry of the problem has been described in the previous section,
elsewhere [11]. Here we give a mathematical model of the physics.

Because any computational domain is necessarily finite, we will consider &bex
[—a, a] x [—a, a]. Lettingu(x, y, t) represent the excess pressure, a model for acoustics
given by the partial differential equation

U = (X, Y)?Au+ f(x,y,t) inQ,t>0. (7a)

Herec(x, y) represents the unknown soundspeed distribution, while y, t) is a known
acoustic source. Initially, the system is at rest, hence

ux,y,0) = u(x,y,0) =0. (7b)

We need to simulate an unbounded medium with a bounded domain. In the unbour
medium, we would have a boundary condition fef + y?| large that amounts to saying
that waves which are sufficiently far away from the origin and traveling outward will &
radiated to infinity. To simulate the unbounded medium, we assume thabnstant near
the boundary of2 and apply the Engquist-Majda boundary conditions [6] along the fl:
parts ofdQ2 (and a modification of Engquist—-Majda at the corner8®@j. For points away
from the corners, the boundary condition is given by

2

c

CUyt — Ugt + Euyy =0 for {x = +a; |y| < a}, (7¢)
CZ

CUyt — Uyt + Euxx =0 for{y = +a; x| < a}. (7d)

Let R represent the collection of coordinate points where receivers have been place
recordu. Thus,

R={(X,¥r) = (pcost, psing;),r =1:p}

240 COLEMAN, SANTOSA, AND VERMA

for somep > 0. The forward map is given by
Alc flr == ulXe, ¥, b).

The source ternf (x, y, t) is assumed to be null fdr= 0. We will view the forward map
A[] as dependent oo and parameterized bf.
The nonlinear least-squares formulation is given by

p T
min3- 3" [1Al 0 - i OF.
I r=1

whereg; (t) is the measured response at locatign ;) for the sourcefi (x, vy, t).
Discretization of (7) is quite straightforward. The only tricky part comes in discretizin
the Enquist-Majda boundary condition. Lettifg, y;) = (iA, jA),—n <i < n, and
—n < j < n, we discretized the domai2 by a regular mesh of sizA =a/n. Time is
discretized as in the 1-D cadg:= kAt fork =0 : m.
Let the (2n + 1)? vectoruX represent the value far(x, y, t) at the node points at time
tk. The finite difference scheme can be written in shorthand as

uktt = F(c, Uk, U, fork=1:m,
with u=! = u® = 0. The discrete forward map evaluateat each receiver, thus
Alc; 1€ = Tuk,

whereT is a matrix of sizep-by-(2n + 1)? and its function is to “grab” values af at time
stepk at the recievers. In place of the integration in the nonlinear least-squares, we ha

P m
mind~ %" >~ |Alc: A1k — gk |*. 8)
|

r=1 k=1

Heregﬁ is the measured response at receivat time stefgk when the excitation id;.

4. THE EXTENDED JACOBIAN FRAMEWORK

We restrict our discussion to the 1-D problem for clarity of presentation. The prescripti
for computing Jacobian vector and adjoint vector products for the more complex 2
problem follows the same lines as for the 1-D problem. An algorithm for the forward m:
for the 1-D case is

ul=u’=0

for k=0:m-1
uktl = F(c, uk, uk-1 9)
hk+1 — e'll'uk+1

end

We use the notatiohy = A[c]x. Thus the function in question is the mapping frarnto
h= (hls h27 R hm)T-

INVERSION USING AUTOMATIC DIFFERENTIATION 241

We can give an alternate description of this mapping by enumerating through the loc

ul=F(c,u’ u?
u? = F(c, ul, u%

um = F(c,um1 um-2)
h=eeful +eefu?+ .-+ enefu™

We call this the extended function. The extended function allows for an easy way to comy
the Jacobian and its transpose. Formally, the directional derivativénahe directiondc,
i.e., the Jacobian-vector product, is given by the calculation

dul=du®=0

for k=0:m-1
duktl = 3, F (¢, Uk, U de + 3. F (¢, uk, uk=1) duk + 95F (c, uk, uk—1) duk-1 (10)
dhes = €] duktt

end

The matrices.F, 9,F, anddsF are Jacobians of the functidh with respect to the first,
second, and third variables. Therefore, they(are 1)-by-(n + 1) matrices. In a computer
program, we would simply definE (c, -, -) and use AD to either compute these matrices
or produce subprograms that calculate the action of these matrices on given vectors.
desired directional derivative (Jacobian times vediris dh = (dhy, dhy, ..., dhy)".

4.1. Adjoint Computation via Linear Algebra

The above calculation can be defined as a set of matrix equations through the use o
extended Jacobian framework [3, 4]. Let

du?!
2
au= |
du™
Define them(n + 1) x m(n + 1) matrix
M=
— 0 0 0
3, F(c, ut, u% —1 0 ’ K 0
d3F(c,u?, ul) 8F(c,u?ul) —I 0
0 T ’ . —1 0
i 0 LR u™hu™?) R (cu™t um?)] |

242 COLEMAN, SANTOSA, AND VERMA
andm(n + 1) x (n + 1) matrix

nF(c,u,u
91 F(c, ut, u%

B =
aF(c, u”;‘l, um-2)
andm x m(n + 1) matrix
T=[ee] &€ ... emefl
Then
—MdU = Bdc, and dh=TdU.
From the above, we can solve fot) and write

dh=—-TM!Bdc, (11)

which encapsulates the Jacobian-vector product calculation in (10).

To obtain a formula for the adjoint-vector product calculation, we start by formally takir
the adjoint of (11). Lep be the result of multiplying vectar by the adjoint of the Jacobian.
Then from (11)

p=-B"MTTTq. (12)

The matriceB, M, andT should not be computed explicitly, but rather, this formalism is
used to generate an efficient algorithm for findmgiveng.

Let g be anm-vector. ThenQ =T "q is anm(n + 1)-vector. From (12) if we lel =
—M~TTTq, then

-MTY=Q and p=BT"Y. (13)

By exploiting the structures d#l andB, we can come up with an efficient algorithm to find
p for a givenq. Because of the lower-triangular structureMdf we never need to invert any
matrices. The algorithm starts by chopping@pnto m separate pieces,

INVERSION USING AUTOMATIC DIFFERENTIATION 243

and similarly forY. Then, according to (13), we can calculatby

y" =" p=dF(cumt umA)Ty"

y™t =gt 4 8oF (¢ um Tt um A Ty

p=p+aF(Cum? umTynt

for k=m—-2:-1:1 (14)
yk — qk + 82F(C, Uk, uk—l)Tyk+l + 33F(C, Uk+l, uk)Tyk+2
p=p+ 81F(C, Uk_l, uk—Z)Tyk

end

Note that we have adjoints/transposedgf (c, -, -), 3;F (¢, -, -) anddzF (c, -, -). These ad-
joints can be computed explicitly if we have matridg§, 9,F, anddsF or we can resort
to AD to produce subprograms that compute their action on given vectors.

Note that in the algorithm (14), we need to have available values of the tiklids all
indicesk. Depending on the size of the problem, it may be more efficient to store only valt
of u* for some indicek € K and use (9) to generate the field for other indikesK . An
efficient method to do this is discussed in [8].

4.2. Adjoint Computation via Adjoint Variables

We give an alternate derivation of the algorithm in (14) which is based on using adjo
variables. Consider a simple calculation involving the following 3 steps. The input varial
is c and the output variable igs; ug is a parameter. The steps are

uy = f(c, up, 0)

ux = f(c, ug, up)

us = f(c, uz, ug).
We can view this as an extended function. The Jacobian calculation is

du; = Blf(c, Uo, 0) dc
du, = 91 f(c, ug, ug) dc+ 9, f(c, ug, Ug) duyg

dus = 91 f(c, up, up)dc+ 92 F(C, up, ug) duy + 33 f(C, Uz, up) duy.

Therefore, the Jacobian (in this case, derivative) can be identifigdfemn the output
dus = Jdc This is a forward mode computation.

Let the adjoint variables bp andvs so that we formally have = J7 vs. If we viewdu,
anddu, as intermediate variables, then we can associate to them adjoint variabled
vo. From the third equation in the adjoint calculation, we can formally write

p 91 f(c, up, u1)
vo | = | d2f(c,up,uy) | v3
U1 d3f(c, uz, u)

244 COLEMAN, SANTOSA, AND VERMA

and from the second,
[p} a1 f(c, ug, uo)
= v2,
U1 92 (c, ug, Up)
and from the first,
p = 91 f(c, ug, O)us.

The contributions to each of the adjoint variables are summed over each operation, he

v = d2 T (C, Up, Up)vs
v1 = 93 (C, Uz, U vz + 92 (C, Uy, Up)v2

p = 31 f(c, up, up)vs + 91 T (C, Uy, Ug)va + 91 T (C, Ug, O)vy.

This is the reverse computation [9].

We can generalize this concept to the 1-D wave propagation problem. In (10), we iden
adjoint variableg with dc for the input, andj with dh for the output. To the intermediate
variablesduX, we associate adjoint variable§ Performing the reverse mode calculation,
we must start at indek=m—1 . Letgy, fork=1 : m, be the elements @f. The adjoint-
times-vector algorithm is

set V=0
for k=m—-1:0
VL — kD €101
Vk — Vk + 82F(C, Uk, uk—l)TVk+l (15)
Vk—l — Vk—l + 83F(C, Uk, uk—l)Tvk+1
p=p-+ a]_F(C, Uk, ukfl)TVkJrl
end

At the end of the calculation, we can identgy= J'q.

4.3. Discussion

The foregoing methodology, while limited to the 1-D problem, can be adapted to so
the more complicated 2-D problem. What we wish to emphasize here is the concisene:
the extended Jacobian framework and how to exploit the underlying problem structure.
algorithms in (10), (14), and (15) can be viewed as code templates for Jacobian and ad
vector product calculations. AD is deployed in computing the Jacobian and adjoint of |
subproblem described by the time stepping process (4).

We recall that the adjoint (reverse produstF (c, -,)"y, etc., can be computed us-
ing the adjoint (reverse) mode of an AD tool. For large problems like this, computil
the adjoint product of the timestep routine (4) can be very expensive, since the size
c, uk, anduk~! can be large. An AD tool would be default assume that every element
91 F (c, uk, u*=1) depends on every element@fu®, andu*~1. This assumption on depen-
dence generates a “table” which is used in computing intermediate values in the rev
product mode. For example, ADOL-C [10] implements this lookup by creating a tape, whi

INVERSION USING AUTOMATIC DIFFERENTIATION 245

itwill write onthe diskif the problem size is large. When it does this, it becomes unaccepta
inefficient.

This concern brings us to the main idea of this paper, i.e., that of AD applied to t
finite difference stencil. Our approach is to use AD on the smallest component of
calculation—a kind of “microscopic” structure exploitation. We discuss how this is dor
in the next section.

In principle, what we are exploiting is a specific sparsity structure that is inherent in t
finite difference scheme. A general approach for exploiting sparsity in AD is described

[2].

5. EXPLOITING THE STENCIL STRUCTURE

The finite difference method that we used in the 1-D case can be written as indicate
(4) which we rewrite here

utl = Fc, uf, uc Y, withut=u’=0.

This shorthand notation does not reveal the stencil structure given by the explicit formt
in (3). For thejth component of***, j not equal to 0 on, from (3a) we can write

K+l _ g e gk K gk kel
uitt = (o, Ui g, Ul Ul g, Ui, (16)

The above expression spells out clearly that the dependendeobn ¢, uk, andu*?, is
very sparse This is best visualized by studying Fig. 2. Thus, we need only to deal fvith
which is a function of only 5 variables. From (3c—3d), we have two more such functio
but they depend only on 4 and 3 variables, respectively, and are given by

K+l _ K gk gk-1
ug" = fu(Co. Ug. U3, Ug).

Ukt = fr(cn, us_y, uk).

t uk+1
J
k k k
u, u: ur
ot J AL
k-1
_| * U;

FIG.2. The stencilforthe 1-D problem fgr# 0, n. Boundary nodes are slightly different and require separats
treatment.

246 COLEMAN, SANTOSA, AND VERMA

The functionF (-, -, -), representing a time-step, is now replaced with the pseudo-code

function ukt! = F(c, uk, uk-1)

Ug™ = fu (co, ug, uf, ug™)

ugtt = fr(Cn, uk s, uy)
for j=1:n-1

k1 k-1
Uit = £ (cp, uf_g U, g Ui

(17

end

It is to these “small” functions of a few variables that we want to apply automat
differentiation. The benefits are that we will have efficient codes which explicitly explc
the structure of the problem. The cost is that the derivative and adjoint codes will be sligt
more complicated to assemble. We discuss this next.

5.1. Sparse Jacobian

Due to the sparsity afforded by the stencil structure, it is feasible to calculate the f
Jacobian (rather than the Jacobian vector product). To see this we introduce projec
matrices. Leg; be thejth unit vector (we will letj run from 0 ton for convenience). Then
(16) can be rewritten in terms of vectocsu¥, andu*~! as

k+1 __ T T T k=1
ultt = f(efc.ef_ju* efuk, e uk efu). (18)

In computing the Jacobian, we needed the derivativek @f-, -) with respect to the 3
variables. We next derive procedures to do this using the stencils.
The components dfy(c, uk, uk-1) are

)
(Vc k+1)
Fo=|
()"

| ()

The gradients are easily obtained by differentiating (18) with respect\iée obtain, for
j 75 Os nr

k+1 _ T ol T k=1\ 4.
Ve _alf(ejc,ej_lu eu eJ+1u e/ u)ey,

which is an(n+ 1)-vector with a single nonzero entry @t Thus, it can be seen that
Fi(c, uk, uk-1) is adiagonalmatrix. This property is not apparent to state-of-the-art auto
matic differentiation programs.

The JacobiarFs(c, uk, u=1) will also be diagonal for the same reason and will be
computed by applying AD to (16). The Jacobi&s(c, uX, u“-1) will be slightly more
complicated. The components of the Jacobian are similar to thdsg of, -) except that
the gradient will be with respect to*. Directly differentiating (16) with respect to*

INVERSION USING AUTOMATIC DIFFERENTIATION 247

yields

k+1 __ T T k AT,k AT k AT, ,k=1\A.
VUt = E)zf(ej c.ej ;U e/u el U, efur)e 1

j i
T T k ol k aT k ol k—1\a.
+093f (efc,ef_;u, eju, e/, U, efu e

+041 (€] c.ef_;u el Uk, e u ef U) e

Thus, the matrixF,(c, u, uk-1) is atridiagonal matrix.
We can summarize the steps in a MATLAB pseudo-Gode

Fi= [0 fLel];

Fo=[(0fLel + dsfLel)];

Fs=[dafLe]]s

for j=1:n-1
Fi=[Fuofe];
Fo = [Fx (82fej11 +dsfef + 84fejT+l)];
Fs=[Fs dsfef|;

end

F1 = [Fy; 0. fre]l]

Fo = [Fz 02frel_y + 03 frel |
Fs = [F3; zeros (1,n+ 1)];

Once the matriceB;, F,, andF; are obtained, we can use the code in (10) to compute the fc
ward derivatives and the code in (14) to compute the adjoint. The codes for the partial det
tives of f, f_, and fr are easily obtained using AD. These codes are expected to be v
efficient because of the simplicity of the stencil formula and because of the small num
of independent variables involved. We have gained efficiency in the AD computation by «
plying AD at the stencil level. The cost to the user is performing some detail “hand” codir

We can employ a similar approach for the more complicated 2-D example. We note t
a typical stencil for interior nodes is given by

uk+1 k k k k k—l))

ij o = f(cijvU!(_l,jvUi+1,jv“i,j—1’ui,j+1»Uij’uij

The stencil is displayed in Fig. 3. Boundary node and corner nodes, because of the abso
boundary conditions described in (7c), result in slightly more complex stencils. The k
observation is that the stencil embodies the sparsity structure of the Jacobian and is a fe
that should be exploited.

5.2. Stencil in Forward and Reverse Mode

We can also exploit stencil structure without explicitly computing the Jacobian. TF
results in procedures to compute the Jacobian times vector and adjoint times vector. Sug
we are giverdc and we wish to calculate the vectdin as outlined in (10). The approach
we take will make use of stencil formulas such as (16). Assume that we have used

20ne would use sparse utilities to implement this in MATLAB.

248 COLEMAN, SANTOSA, AND VERMA

k+1
oy
k Uijr1
ui-],j
t O e Qk Ou’.()
ul] i+l1j
o :
k O . kI
%ij-1 i
y

X
FIG. 3. The stencil for the 2-D problem for an interior node. Boundary and corner nodes are slightly differe

and require separate treatment.

to generate an algorithm to compute the gradient @f -, -, -, -) times a 5-vector; that is,
given X andd X, we have a procedure to find

f(X) and Vi(X)-dX.

Here X stands for a 5-vector with components= [c;, u*_,, uf, u¥,,, uX""]T. Thenitis
easy to see that from (16)dfX = [dc;, duf_,, duf, duf, ;. duf™"]T, then

dutt = v (X)-dX.

We would have similar formulas fgr=0 andj = n with the difference that the vector of
independent variables would be 4 and 3 dimensional, respectively. We can therefore as
ble thed u‘j‘+1 within an outer loop which corresponds to the time steps. The pseudo-cc
would take the form
dul=du®=0
for k=0:m-1
X = [co, uf, uk, U™ T dX = [doo, du, duk, duls™]"
du§™ = Vi (X)-dX
X = [Co, uk_1, uK] T dX = [dcy, duk_,, duk]”
duftt = v fr(X) - d X
for j=1:n-1
X = [cj, uf_p Uk U, u‘f‘l]T; dX = [dcj, duf_, duf, duf, ;. du']-“l]T
dui*t = V(X)-dX

(19)

end
dhy;q = dut?

end

The adjoint codes generated by AD on the stencil formula (16) computes the followi
Given a scalap and a vectoiX, the adjoint code calculates a 5-vector

vV (X).

INVERSION USING AUTOMATIC DIFFERENTIATION 249

We have similar procedures fdi (-) and fr(-). In reverse mode, we want to perform a
calculation similar to (15). We start with a vectgpr= [qgy, 02, ..., gm] ', and we wish to
computep = JTq. The pseudo-code for this is

set V=0
for k=m-1:0
USH = UEH + Ok+1

X = [co, ulf, uf, U™

Y = [va Ulé, Ulf, Uléil}-r

Y =Y +dufTV L (X)
for j=1:n-1

k k [k k-11T
X:[Cj,uj'il,ui,uj'+l,ui } (20)

Y =[p;. vlj(fl’ v;‘, Ulj(+1v Ulj(_l]T
Y =Y +dvftV (X)
end
X = [Cn, UK, UE]T
Y = [pn, Urﬁfl’ va
Y =Y + dvf+iv fr(X)
end

Algorithm (19) for the forward product calculation and algorithm (20) for the reverse prodt
calculation will be extremely efficient because the codes produced by AD for calculating
derivative of f and its adjoint will be nearly as short and simple as the function calculatio
The number of independent variables is small, and there are no loops as can be seenir
The algorithm (20) can be easily understood by noticing that the input is the edtbe
algorithm goes backwards in time computing adjoints of each state by using the previol
computed adjoints. At completion, this algorithm returns the adjoints of the independ
variables.

In 2-D, the stencil is a bit more complex as already pointed out, but the general princi
described here applies. Indeed, we have coded a version of algorithms (19) and (20) fo
2-D problem. We discuss the results of our numerical calculations next.

6. NUMERICAL RESULTS

We present some results from our numerical computations. In both examples, we
TAMC [7] to obtain derivative and adjoint codes from Fortran sources. All the Fortre
codes were “wrapped” as MATLABnex-files and used in conjunction with MATLAB
codes.

Our goal in this paper is to demonstrate the use of extended Jacobian framework toge
with exploitation of stencil in Jacobian and adjoint calculations. In a subsequent work,
apply our approach to solve a 2-D inverse problem arising in acoustic imaging.

250 COLEMAN, SANTOSA, AND VERMA

6.1. The 1-D Problem

In our example, we choogex = 1 andAt = 0.8. The domainis of length = (N —1) Ax.
We will use severaN in our calculations. The initial boundary value problem for the 1-C
wave equation is discretized according to (3). The number of time stepsvidich will
be varied as well. For excitatioh(t), we choose the derivative of the Gaussian. The grap
of f is shown in Fig. 4a. We take two sound speeds) andc,(x), shown in Fig. 4b
whenn =100. The resulting boundary data dr@) = u(0, t). When the medium is;(x)

40 60 80 100 120 140 160

0.1 -
0.051 -

a()

-0.051

-0.1F
~0.15F 1

_0.2 i1 L H 1 L Il 1
0 20 40 60 80 100 120 140 160

p(x)
(=4

0 10 20 30 40 50 60 70 80 90 100

FIG. 4. (a) The excitation used in the examples. (b) The two sound speed profibesin dots,c,(x) in solid.
(c) The graphs oth, — h;) and J(c;)(c, — ¢;). (d) The graph op = J(c1)" (hy(t) — h;), shown for comparison,
is the graph ot, — ¢;.

INVERSION USING AUTOMATIC DIFFERENTIATION 251

the boundary data at® (t), andh,(t) when the medium is,(x). Letq = h; — hy; the
graph ofq(t) is displayed in Fig. 4c fom=200.

We will first compute the Jacobian ef(x) times the difference,(x) — c1(x). The re-
sulting output vector should be very closajid). A comparison ofp(t) with J(c1)(Cz — ¢1)
is shown in Fig. 4c. Next we calculate the adjoint tinggb); i.e.,

p=J(c)" (hy —hy).

The output of this calculation will be the steepest descent direction corresponding to
nonlinear least-squares functional in (6). This direction would be similef(t0 — c1(x).
The graph ofp(t) is shown in Fig. 4d. One can see that the 2 big signals, which a
scaled versions of , are reproduced near the places where) — c1(x) take jumps.
Unfortunately, the similarity ends there; the result shows that the inverse problem is
very well posed. However, we did check that the Jacobian and the adjoint are corre
computed by evaluating

q'Jdc and dc'JTq (21)
and comparing their values for any choicemfy, anddc. The agreement is usually 14

digits. Additionaly, the result is also confirmed by the computatiog'of dc using finite
differences, where we usually get about 6 digits right. We show a typical run in Fig. 5.

0.5 0.5

20 40 60 80 o 20 40 60 80 100

1.5 3
1 2
0.5 1
))
T ~—
2 0 = 0
8 ®
-0.5 -1
-1 1 -2
-15 -3
0 20 40 60 80 100 0 20 40 60 80

FIG.5. Atest of the correctness of Jacobian and adjoint calculations. In this exampgl&0 andm = 100.
We choose at random 2 vectats andq displayed on the first row. On the second row, we skiogc and J7q.
The inner productg™ J dc anddc' J7q are evaluated. They agree to 14 digits.

252 COLEMAN, SANTOSA, AND VERMA

Computation time is linear in the numbenohodes for a fixed number dhodes. There
is no difficulty with memory as the stencil codes are very simple with a small number
independent variables.

6.2. The 2-D Problem

In the 2-D problem, we set up a grid of 161-by-161 node points. The computatior
domain is [-80, 80] x [—80, 80], thusA = 1. For interior nodes, we use a second orde
accurate discretization of the wave equation (7a). On the boundary nodes, we use a se
order discretization of the Enquist—-Majda boundary condition (7c)—(7d). The corner noc
and the 2 nodes adjacent to the corner on the boundary, require special stencils. The st
are obtained by requiring that the discrete wave equation be satisfied at the node whi
the same time satisfying the discrete version of the absorbing boundary condition.

For excitation, we choose a point source. To model this, if the source is at(iRoglg,
i.e., located at positiofisA, jsA), we assume that(x, y, t) is

foyp o [P0 atisAs8)
7 o otherwise

The time-dependent functigf(t) is chosen to be a Gaussian and will be sampled at th
time incrementg\t = 0.55, which is the time step chosen for the finite difference schem:

Data will be collected at 64 stations located at node points. These points are nodes
lie close to a set of points distributed evenly at 64 places on the circumference of a circl
radius 72. We will take 381 times steps. A window of siz&D, 70] x [—70, 70] represents
wherec(x, y) is allowed to vary. Thus the mapping from sound spetediata at the receiver
is from |R141>< 141 to |R64>< 381_

In Fig. 6a we display the sound speed distribution in the domain. The receivers are mal
with circles; receiver 1 is at'from the positivex-axis. The source is located byaNext,
in Fig. 6b, we display the receiver data when the medium has the two cylinders shown.
difference between the previous data and those when the domain is homogeneous is s
in Fig. 6¢. In Fig. 6d, we show the result of applying the adjoint on the difference data
Fig. 6¢. This process is often refered to as back-propagation, and corresponds to the ste
descentdirection forthe nonlinear least squares functionalin (8). The resulting vector she
resemble the image of the two cylinders. Indeed this is the case if one compares. Figs
and 6e, the latter displayed for comparison.

In numerous experiments with random vectors, we were able to get the inner prodt
similar to (21) to agree 14 digits. The adjoint calculations take approximately 115 seco
on a 4-processor SGI Challenge L. The hand-coded gradient calculation takes appi
mately 90 seconds. The fully AD-generated gradient (using the reverse mode) takes ali
5 minutes to compute. In another run, the size of the sound sp@adiependent variables)
was increased from 144 141 to 201x 201. A window of size {100, 100] x [—100 100]
represents where(x, y) could vary. The receivers are placed on the circumference of
circle of radius 90. The grid of 244 241 node points is set up corresponding to the domai
[—120, 120] x [—120, 120]. The adjoint calculations scale very well and take 225 secon
to compute. The hand-coded gradient calculation is marginally efficient and takes ak
200 seconds. However, the fully AD-generated gradient scheme becomes intractable
cause the volume of data to be stored for the reverse mode is much larger and some

n

[=] =]

0o000¢g
0o?® %o
o o
®0pg00°

0 10 20 30 40 50 60
recaiver
c
200 '
|
150
£
=100
50F
0
0 10 20 30 40 50 60
receiver

e

FIG. 6. (a) The setup for the numerical experiment. The two cylinders represent sound speed anome
The darker cylinder is 2% faster while the lighter cylinder is 1% faster than the background medium. Show
circles are the receiver locations. A star marks the location of the point source. (b) The receiver data whel
two cylinders are present. (c) The difference between (b) and receiver data when the medium is constant. (d
adjoint applied to (c). (e) The two cylinders plotted on the same scale as in (d) for comparison.

253

254 COLEMAN, SANTOSA, AND VERMA

time is spent in memory paging and accessing secondary storage. This takes nearly 20
utes to finish. This illustrates that the adjoint scheme presented in this paper is automati
still much like traditional hand-coding in performance, while the naive use of AD does
provide a reasonably efficient solution.

7. CONCLUSIONS

We have described an inverse problem arising in wave propagation and how the r
arises for efficient computation of Jacobian and adjoint products when the problem is pc
as a least-squares problem. In this work, we describe the extended Jacobian frame
which gives a high level description of Jacobian and adjoint vector product calculation. T
framework is particularly appropriate for functions whose evaluation involve some type
time stepping, such as those that arise in discretizing the wave equation.

We show further that the stencil structure of the finite difference scheme that provic
the underlying function evaluation can be exploited. Automatic differentiation is applie
at the stencil level, and the resulting subprograms fit nicely within the extended Jacot
framework. The framework provides a guide for building highly efficient codes for Jacobi
and adjoint vector product evaluations. The one drawback of the approach is that we |
given up some “automation” for efficiency. A small amount of hand-coding is required
assemble the programs. Nevertheless, our approach provides a way to overcome me
problems associated with present AD technology.

One important extension of the 2-D problem we discussed is the case when the rece
don't lie on the grid points. The proposed methodology can be easily extended to har
the interpolation between the grid values required in this case. It poses no difficulty
the adjoint computation as the interpolated values are a linear combination of the val
at close grid points. This can be handled through definition of general (linear) project
operators which when applied to the values at all grid points results in the the values at
receivers. This linear operator is trivial to handle in the adjoint computation via AD.

Overall, the idea of exposing the stencil structure is very promising and can lead to
order of magnitude improvement in the adjoint code, as our numerical results show.

REFERENCES

1. G. Chavent, F. Clement, and S. Gomez, Waveform inversion by MBTT formulatidiathematical and
Numerical Aspects of Wave Propagatiedited by Cohergt al. (SIAM, Philadephia, 1995), p. 713.

2. T. Coleman and A. Verma, The efficient computation of sparse Jacobian matrices using automatic differ
ation,SIAM J. Sci. Computl9, 1210 (1998).

3. T.Colemanand A. Verma, Structure and efficient Hessian calculatiddyiances in Nonlinear Programming
edited by Yuan (Kluwer Academic, Boston, 1996).

4. T. Coleman and A. Verma, Structure and efficient Jacobian calculati€@@ormputational Differentiation:
Techniques, Applications, and Tooéslited by Berzt al. (SIAM, Philadelphia, 1996), p. 149.

5. T. Coleman, F. Santosa, and A. Verma, Semi-automatic differentiatiBnp@eedings of Optimal Design and
Control Workshop, VPI, 1997

6. B.Enquistand A. Majda, Absorbing boundary conditions for the numerical simulation of vidatks,Comp.
31, 629 (1977).

7. R. Giering,Tangent Linear and Adjoint Model Compil@dser Manual, TAMC Version 4.7, 1997).

8. A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic diffe
entiation,Optim. Methods Softwark 35 (1992).

9.

10.

11.

12.

13.

14.

15.
16.

INVERSION USING AUTOMATIC DIFFERENTIATION 255

A. Griewank, Some bounds on the complexity of gradients, Jacobians, and Hess@msgkexity in Non-
linear Optimization edited by Pardalos (World Scientific, Singapore, 1993).

A. Griewank, D. Juedes, and J. Utke, ADOL-C, a package for the automatic differentiation of algorith
written in C/C++,ACM Trans. Math. Softwarg2, 131 (1996).

T. Mast, A. Nachman, and R. Waag, Focussing and imaging using eigenfunctions of the scattering ope!
J. Acous. Soc. Amin press.

F. Santosa and W. Symés) Analysis of Least-Squares Velocity Invergigaciety of Exploration Geophysi-
cists, Tulsa, 1989).

F. Santosa and W. Symes, Computation of the Hessian for least-squares solutions of inverse proble
reflection seismologynverse Problend, 211 (1988).

W. Symes, A differential semblance criterion for inversion of multioffset seismic reflectionlJd&eapphys.
Res.98, 2061 (1993).

W. Symes and C. Zhan#,Finite Difference Time Stepping Clag&ice University TRIP Report, 1997.
A. Tarantola|nverse Problem Theor{Elsevier, Amsterdam, 1987).

	1. INTRODUCTION
	FIG. 1.

	2. AUTOMATIC DIFFERENTIATION BACKGROUND
	3. INVERSE PROBLEMS AND NUMERICAL MODELING
	4. THE EXTENDED JACOBIAN FRAMEWORK
	5. EXPLOITING THE STENCIL STRUCTURE
	FIG. 2.
	FIG. 3.

	6. NUMERICAL RESULTS
	FIG. 4.
	FIG. 5.
	FIG. 6.

	7. CONCLUSIONS
	REFERENCES

